
Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Digitalization of Kernel Diversion from the Upstream
To minimize local code modifications

Hisao Munakata

Linux Foundation Consumer Electronics working group

April 4th 2016

1 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Who am I ?

From an embedded SoC provider company Renesas
Linux Foundation CE1 working Gr. Steering committee and AG member
LF/CEWG LTSI2 project initiator member
An Advisory Board and major contributor of AGL3
Leads dedicated upstream development team at Renesas
And, supports customers who develop automotive IVI products

1CE = Consumer Electronics
2LTSI =Long Term Support Initiative
3AGL =Automotive Grade Linux

2 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Renesas contributes for kernel upstream development

http://lwn.net/Articles/679289/

3 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

http://lwn.net/Articles/679289/

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Did you care for purity of your Linux BSP

4 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

common embedded Linux issues caused by in-house kernel

5 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Embedded Linux development issues-1 : no de-facto distribution
Various distribution exist for multiple target

Desktop : Ubuntu, Fedora, Debian
Smartphone : Android AOSP
Game : Steam OS
Server : Red Hat, SUSE, Oracle
Cloud : Chrome OS
R&D : Arch Linux, Gentoo

General embedded : ?
Contents of Embedded Linux distribution

Many embedded Linux developers still rely on SoC vendor’s kernel

6 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Embedded Linux development issues-2 : quality of vendor’s kernel

Why kernel may contain in-house code?
in-house code = not from the upstream
Already merged in later version kernel
Dirty quick workaround
Rejected by the community

break existing upstream code
contaminate with upstream design
designed for specific environment
poor C coding

Vendor Linux BSP likely contains dirty code

Vendor’s BSP kernel may contain in-house code that troubles you

7 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Embedded Linux development issues-3 : security patch adoption

Security (=software virus protection) is no more Windows’s PC only risk
Common Vulnerabilities and Exposures (CVE) information is available at
https://cve.mitre.org/
Community provides (some of) security-fix as a LongTerm-Stable (LTS)
LTS security-fix patch is designed for native upstream kernel code
Security-patch delivery becomes mandatory service for the end-user

Security rating = frequency of security-fix patch release
LTS security-fix patch may conflict with in-house kernel code

In-house kernel modification will result severe security risk

8 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

https://cve.mitre.org/

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Embedded Linux development issues-4 : kernel version migration

New product surely requires new kernel
Modern application requires newly supported advanced kernel API
i.e. CMA, DMABUF, KDBUS,…
You need to manipulate state-of-art device to make your new product
New peripheral device interface support may be requested
i.e. USB3.0, Bluetooth low-energy, EthernetAVB…
New file system may be demanded to support a large volume
Advanced security framework becomes mandatory criteria

Local modification (even optimization) breaks kernel upgradability

9 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Sanity assessment for the vendor kernel

10 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

We need to assess in-house patch risk level (clean, safe and dirty)
in-house code category

a) Early adoption (clean)
Backport from newer upstream code
Early adoption from -rc or -next

b) Minor fix (relatively safe)
small bug-fix against mainlined code
self-containing code adoption

c) Rewrite/break existing code (dirty)
replace an existing upstream code

3 different code flows to create vendor BSP

The severity of each in-house patch depends on its characteristics

11 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Standard BSP BOM does not contain in-house patch risk indicator
Typical Linux BSP BOM does not tell its sanity

Kernel version is introduced, however…
No information provided about

Referenced kernel tree information
Delta against the upstream kernel code
Description of vendor kernel file structure
Description of in-house kernel patch
Security patch delivery scheme

Very hard to determine the sanity of vendor
BSP kernel from a current standard BSP BOM

Image of “BSP certification of contents document”

We want to define and create “BSP certification of contents document”
12 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

How can we assess the vendor BSP kernel sanity?

upstream kernel vs. vendor kernel per file comparison
File name

Detect locally added or deleted files
Scan later upstream kernel to determine a backport

Time stamp / file size
Can find modified which file was edited
diff command (or git diff) helps change scale detection

Binary blobs
Use of binary blob cause future serous migration trouble

We can determine the vendor kernel risk from the code, however…

13 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

common embedded Linux issues caused by in-house kernel
Sanity assessment for the vendor kernel

Linux kernel source code comparison cannot be a human job

14 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

Computer aided BSP kernel sanity check

15 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

upstream code match detection

16 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

Original yaminabe method (SHA256 hash based file comparison)

Original yaminabe file comparison procedure
use SHA256 for hash value calculation
upstream kernel file number count – (A)
calculate hash of original kernel files – (B)
calculate hash of BSP kernel files – (C)
compare (B) and (C) to determine locally
modified file from the upstream kernel
count modified files number – (D)
(D)/(A) gives BSP sanity index value

yaminabe only detects match or unmatch

17 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

git id trace method (git patch-id and commit-id comparison)

Scan and compare patch-id and commit-id by the script
Premise: vendor kernel managed by patch and git
Scan vendor kernel patch-id to create search list
Write a custom script to scan upstream git commit-id
Check if patch-id exist in upstream kernel git
Count in-house orphan patch and upstream patch
Get an accurate in-house code ratio and trends
Can trace backport patch from later upstream

Need to write a dedicated script for each kernel
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

v4.2-rc1 v4.2-rc2 v4.2-rc2 v4.2-rc5 v4.2-rc5 v4.2-rc6 v4.2-rc7 v4.2-rc8 v4.2 v4.2 v4.3-rc1 v4.3-rc2 v4.3-rc3 v4.3-rc5 v4.3-rc7 v4.3 v4.3 v4.4-rc1 v4.4-rc4 v4.4-rc5 v4.4-rc6 v4.4-rc8 v4.4 v4.4 v4.5-rc3 v4.5-rc4

Renesas-drivers v4.2, v4.3 and v4.4 commit statistics

Merge Commit
Backport Matching Commit ID

Backport Matching Patch ID
Local Commit

18 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

upstream “code match” method summary
We can determine how many in-house patches are applied in the vendor kernel

IMHO, 100% upstream code BSP is not realistic for embedded device
Thus, we need to measure the risk of each vendor BSP kernel code.

Pros. of code match scan
relatively fast and easy
good for encourage people to send more code to the upstream

Cons. of code match scan
cannot measure the magnitude of each local-code risk
cannot distinguish which vendor BSP is clean and sanity

We really need to deep dive into the risk assessment of unmatched file

19 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

TLSH based yaminabe2(=yb2) method

20 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

yaminabe2 (=yb2) : Vendor kernel risk assessment challenge

yaminabe2 (=yb2) project motivation and expected outcome
Collaborative work with Mr.Armijn Hemel (following the original yaminabe)

Code scanner tool to compare upstream and production kernel code
Combine TLSH (A Locality Sensitive Hash) method to measure the risk
yb2 aims to grab a reasonably reliable score without deep code analysis

Aiming open source so that anyone can measure the vendor kernel risk
Hope this tool encourage everyone to minimize risk caused by local code

yb2 aims digitizing the vendor kernel risk using TLSH technology

21 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

yaminabe2 utilizes TLSH (A Locality Sensitive Hash) method
regular hash algorithm (for yb,yb2)

sha1,md5,sha256…
Small difference (even 1 byte)
generate completely different value
Designed for the file identification
linux standard feature
light weight and fast
for file falsification check

A Locality Sensitive Hash (for yb2)
TLSH (Trendmicro LSH, opensource)
Similar file generate closer value
Designed for file locality detection
Need custom installation to use
Relatively slow, more computing
For file diff distance check
Can find closest files pair

TLSH can show the numeric similarity indicator of unmatched files

22 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

yaminabe2 file comparison process flow (SHA256, TLSH combined)

23 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

Use of the reference code database (code origin is configurable)

You can input whatever source as you want

You can add whatever git tree you want to compare
linux upstream git
linux-stable git
LTSI kernel git
vendor kernel public git
closed vendor source git (if you have an access)
OSS project git (AOSP, Tizen,…)
others, if any

yb2 compared linux(upstream) and linux-stable tree as a reference

24 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

yaminabe2 programs and sample reference data
yaminabe2 contents

python script and config
gittlsh.py : script to explode Git repositories and store metadata like SHA256
and TLSH checksums out of band
gittreecompare.py : script to compare two tags in Git repositories and
compute a TLSH score
sourceverifier.py : script for both the Yaminabe and Yaminabe2 projects
sourceverify.config : configuration file used for the Python scripts

pre-compiled database (xz archived size / extracted size)
db contains upstream (Linus’s tree) and linux-stable (Greg’s tree)
kernelgit.sqlite3 (472M / 2G) : TLSH data
kerneldb.sqlite3 (863M / 11G) : SHA256 data + package data

download from http://http://elinux.org/Yaminabe2 (data ready, contents under construction)
25 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

http://http://elinux.org/Yaminabe2

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

It’s time to play yaminabe2 on your machine

26 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-1 : install TLSH to your computer (1/2)

1 grab tlsh from github: https://github.com/trendmicro/tlsh
we used version b53fef82c579906d6a6234bccfc3536c5abd28f0

2 unpack the ZIP file or simply cd into the Git checkout
3 Change the following in CMakeLists.txt (option)

1 set(TLSH_BUCKETS_128 1) to set(TLSH_BUCKETS_256 1)
2 set(TLSH_CHECKSUM_1B 1) to set(TLSH_CHECKSUM_3B 1)
These changes make the scores reported more fine grained.

4 $ sh make.sh
Note: the unit tests will fail if the CMakeLists.txt file is changed.
This is expected, as they don’t expect the settings to be changed.

27 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

https://github.com/trendmicro/tlsh

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-1 : install TLSH to your computer (2/2)

5 cd py_ext;
6 python setup.py build
7 su -c ’python setup.py install’
8 check if the module is installed, type “import tlsh” into python prompt

9 If there is no error message the module is successfully installed.

28 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-2 : Edit reference database configuration (1/5)

Initially, I strongly recommend to start play with pre-compiled yb2 database
that we prepared before start creating your database.
If you decided to use pre-compiled database, still you need to read following
config sections to reflect your database file locations.

As initial whole kernel source TLSH hash generation cause huge amount of
CPU workloads4, I suggest following

1 Use high performance machine (multi-thread helps hash calculation)
2 Use ram-disk (4G min, 8G ideal) to store reference source
3 Place git command on ram-disk, too

4File comparison does not require whole TLSH hash generation
29 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-2 : Edit reference database configuration (2/5)

[sourceverify] section of “sourceverify.config”
database: SHA256 + package info. database location
tlshdatabase: TLSH databese location
trusted: list trusted project group here
scanlicense: license scan option, not used, set to “no”

30 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-2 : Edit reference database configuration (3/5)
[global] section of “sourceverify.config”

gitdatabase: What differs from upper database location setting?
processors: CPU thread allocation, set (amount of CPU threads) - 1
gitpath: GIT executable file location, specify this if you locate it in ram-disk
optimizedb: database size optimization
statebackupdir: location of state cache file (optional)

31 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-2 : Edit reference database configuration (4/5)
Note : Following configurations are only required for initial reference db creation
[(reference git)] section of “sourceverify.config”

type: = project
enabled: yes=use this reference, no=ignore this reference
project: reference group name
gitdirs: reference source location
ramdisk; yes=use ram-disk
revisionlogpath:
restorestate: yes=use state cache
statefile: state cache file location
priority: reference tree priority, 1=highest weight
giturl: git repo location

trustedrepository: if this is untrusted tree, set this to “no”

32 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-2 : Edit reference database configuration (5/5)

Note : Following configurations are only required for initial reference db creation

33 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

upstream code match detection
TLSH based yaminabe2(=yb2) method
It’s time to play yaminabe2 on your machine

preparation-3 : Execute reference database generation

database generation options
Extract pre-build database

pre-build database is XZ compressed (=.xz), use “unxz” to extract
Scan execution error

If you hit an error saying “ImportError: No module named magic”
To solve this you need to install “python-magic”

Start reference DB file generation w/gittlsh.py
$ python gittlsh.py -c ./sourceverify.config
* Initial db creation may take 4 to 12 hours, depends on the size and the machine
* Supplemental creation on top of the pre-compiled takes much shorter period

34 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

Yaminabe2 execution and trial result

35 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

Running yaminabe2 scan on Renesas R-Car BSP

36 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

Now let’s run the very first yaminabe2 file scan
My file placement (reference database, scan target source,…)

/home/munakata/yb2b/master.sqlite3 : SHA256 database on HDD
/media/ramdisk/kernelgit.sqlite3 : TLSH database copied to ramdisk (8G)
TLSH db contains kernel upstream (Linus’s tree) and linux-stable (Greg’s tree)
gitdirs = /home/munakata/source/linux : latest upstream kernel source
Adobe file placement settings are reflected to “sourceverify.config”
/home/munakata/source/renesas-backport/ : scan target source

Start yaminabe2 code scan process w/sourceverifier.py
$ python sourceverifier.py -c sourceverify.config -s
/home/munakata/source/renesas-backport/

37 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

How yaminabe2 (=sourceverifier.py) terminal output looks like
munakata@muna-E450:~/yb2b$ python sourceverifier.py -c sourceverify.config -s /home/munakata/source/renesas-backport/

SCANNING 36603 files
864 FILES NOT FOUND IN DATABASE
COMPUTING AND COMPARING TLSH OF FILES NOT FOUND IN DATABASE

CLOSEST REVISION FOR drivers/base/dma-contiguous.c IS 7ee793a62fa8c544f8b844e6e87b2d8e8836b219 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 17

CLOSEST REVISION FOR drivers/gpu/drm/drm_vm.c IS f435046d38af631920b299455db9e95dfc06d055 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 5

CLOSEST REVISION FOR arch/arm/mach-shmobile/headsmp.S IS cc61591e45c0457139ddd4cd7e57f75928acaaf2 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 210

CLOSEST REVISION FOR drivers/staging/lttng/wrapper/writeback.h IS 9e5c353510b26500bd6b8309823ac9ef2837b761 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 372h

CLOSEST REVISION FOR drivers/gpu/drm/rcar-du/rcar_du_kms.c IS 8bed5cc765ffdd61b59f8405d38b377f5a7f0920 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 63

38 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

How yaminabe2 (=sourceverifier.py) terminal output looks like
munakata@muna-E450:~/yb2b$ python sourceverifier.py -c sourceverify.config -s /home/munakata/source/renesas-backport/

SCANNING 36603 files
864 FILES NOT FOUND IN DATABASE
COMPUTING AND COMPARING TLSH OF FILES NOT FOUND IN DATABASE

CLOSEST REVISION FOR drivers/base/dma-contiguous.c IS 7ee793a62fa8c544f8b844e6e87b2d8e8836b219 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 17

CLOSEST REVISION FOR drivers/gpu/drm/drm_vm.c IS f435046d38af631920b299455db9e95dfc06d055 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 5

CLOSEST REVISION FOR arch/arm/mach-shmobile/headsmp.S IS cc61591e45c0457139ddd4cd7e57f75928acaaf2 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 210

CLOSEST REVISION FOR drivers/staging/lttng/wrapper/writeback.h IS 9e5c353510b26500bd6b8309823ac9ef2837b761 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 372h

CLOSEST REVISION FOR drivers/gpu/drm/rcar-du/rcar_du_kms.c IS 8bed5cc765ffdd61b59f8405d38b377f5a7f0920 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 63

39 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

How yaminabe2 (=sourceverifier.py) terminal output looks like
munakata@muna-E450:~/yb2b$ python sourceverifier.py -c sourceverify.config -s /home/munakata/source/renesas-backport/

SCANNING 36603 files
864 FILES NOT FOUND IN DATABASE
COMPUTING AND COMPARING TLSH OF FILES NOT FOUND IN DATABASE

CLOSEST REVISION FOR drivers/base/dma-contiguous.c IS 7ee793a62fa8c544f8b844e6e87b2d8e8836b219 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 17

CLOSEST REVISION FOR drivers/gpu/drm/drm_vm.c IS f435046d38af631920b299455db9e95dfc06d055 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 5

CLOSEST REVISION FOR arch/arm/mach-shmobile/headsmp.S IS cc61591e45c0457139ddd4cd7e57f75928acaaf2 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 210

CLOSEST REVISION FOR drivers/staging/lttng/wrapper/writeback.h IS 9e5c353510b26500bd6b8309823ac9ef2837b761 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 372h

CLOSEST REVISION FOR drivers/gpu/drm/rcar-du/rcar_du_kms.c IS 8bed5cc765ffdd61b59f8405d38b377f5a7f0920 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 63

846 / 36,603 = 2.3% --- in-house code rate

40 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

What TLSH hash delta tells you about two file’s similarity?
Delta of TLSH hash represents FP rate of 2 files

Identical pair filtered by the SHA256 hash match
Then, create a unmatched list and calculate TLSH hash
TLSH hash delta represents compared file’s similarity,
smaller delta means two files are closed
FP rate = false positive ratio, =false alarm ratio

60 > means relatively closed, minor difference
61 to 150 means have some similarity, but modified
> 150 means limited similarity, almost different

http://www.academia.edu/7833902/TLSH_-A_Locality_Sensitive_Hash

41 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

http://www.academia.edu/7833902/TLSH_-A_Locality_Sensitive_Hash

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

How yaminabe2 (=sourceverifier.py) terminal output looks like
munakata@muna-E450:~/yb2b$ python sourceverifier.py -c sourceverify.config -s /home/munakata/source/renesas-backport/

SCANNING 36603 files
864 FILES NOT FOUND IN DATABASE
COMPUTING AND COMPARING TLSH OF FILES NOT FOUND IN DATABASE

CLOSEST REVISION FOR drivers/base/dma-contiguous.c IS 7ee793a62fa8c544f8b844e6e87b2d8e8836b219 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 17

CLOSEST REVISION FOR drivers/gpu/drm/drm_vm.c IS f435046d38af631920b299455db9e95dfc06d055 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 5

CLOSEST REVISION FOR arch/arm/mach-shmobile/headsmp.S IS cc61591e45c0457139ddd4cd7e57f75928acaaf2 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 210

CLOSEST REVISION FOR drivers/staging/lttng/wrapper/writeback.h IS 9e5c353510b26500bd6b8309823ac9ef2837b761 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 372

CLOSEST REVISION FOR drivers/gpu/drm/rcar-du/rcar_du_kms.c IS 8bed5cc765ffdd61b59f8405d38b377f5a7f0920 FROM
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git WITH DISTANCE 63

846 / 36,603 = 2.3% --- in-house code rate

dirty

clean

OK

42 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

yaminabe2 BSP brief sanity scoring output (current shape)
Originally we aimed to create “BSP certification of contents document”

<BSP certification of contents document> <yaminabe2 BSP scoring output>

43 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

Some R-Car Linux BSP sanity analysis

44 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

R-Car generation2 (kernel 3.10) yaminabe2 trial run

yaminabe2 scan result for R-Car BSP

R-Car gen2 (H2/M2/E2) BSP status
Based on LTSI-3.10 kernel
Upstream 3.10 does not support R-Car gen2
due to its release timing
Due to that, the distance is relatively big
After release, distance becomes bigger
This is caused by local bug-fix code

R-Car gen2 BSP (3.10) average distance was 70,000

45 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

R-Car generation3 (kernel 4.3 to 4.5) yaminabe2 trial run

yaminabe2 scan result for R-Car BSP

R-Car gen3 (H3) BSP status
Keep chasing latest upstream ver. now
Plans to lands on LTSI-2017
(LTSI-2017 ver not fixed yet)
Device support became available at v4.5
Then, the distance dramatically dropped
Keep continue to eliminate local-patch

gen3 BSP distance should be less than gen2
We doubt why current gen3 distance is bigger than gen2 now

46 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

R-Car generation3 yaminabe2 trial run2 (update)
python sourceverifier.py -c sourceverify.config -s /home/munakata/source/renesas-bsp/

yaminabe2 rescan result for R-Car BSP

R-Car gen3 (H3) BSP status (retry)
Retried after ELC2016 presentation
use updated database (inc. v4.5 kernel)
update renesas-bsp git information
re-run with revised script

Now we got much smaller number around 20k

47 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

outcome and lesson learned

48 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Running yaminabe2 scan on Renesas R-Car BSP
Some R-Car Linux BSP sanity analysis
outcome and lesson learned

yaminabe2 achievement: How in-house kernel risk digitalizad

description
Utilizing TLSH mechanism, yaminabe2 start telling interesting indicator
that reflects BSP kernel healthiness
We need to verify the risk of local patch by the distance number
(currently set to 60 and 150) given by yaminabe2.
Also, we need to tune reference database setting to focus on the risk of
local code (eliminating unrelated arch code, etc.)
We could opensource the initial yaminabe2 program for the public review.
We need feedback to improve the value of this trial.

49 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

conclusion

50 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Conclusion

Many embedded Linux developers rely on SoC vendor’s BSP and its kernel may
contain in-house code. And it might cause various security, migration issues. We
need some computer aided vendor kernel assessment tool.

We can compare file match between upstream kernel and vendor BSP kernel.
However, it is not sufficient to assess how unmatched files diverted from the
upstream (=dirty) from that information.

We adopted TLSH (Locality Sensitive Hash) to measure the distance of in-house
code in yaminabe2 project. And successfully it starts telling some score regarding
vendor kernel sanity. use this tool to consult vendor kernel patch risk.

Database generation script, file comparison script and trial reference database that
contains upstream kernel code can be download for your trial.

51 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Call for action and future work candidates

Call for action
Run yaminabe2 file scan for your BSP kernel to consult the risk
Configure your reference database to get more precise result
Encourage your business partner to eliminate dirty in-house code

Future work (so far just an idea for yaminabe3)
Do further verification of the accuracy of TLSH value
Improve reporting (=post processor) feature so that anyone can
Do further study for Renesas R-Car BSP verification

52 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

Did you care for purity of your Linux BSP
Computer aided BSP kernel sanity check

Yaminabe2 execution and trial result
conclusion

Resources
yaminabe2 intro (scripts, pre-compiled reference database)

http://www.elinuxwiki.org/yaminabe2
TLSH

https://github.com/trendmicro/tlsh
https://github.com/trendmicro/tlsh/blob/master/TLSH_
Introduction.pdf
https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_
final.pdf

Renesas R-Car BSP seed code
gen2 : https://git.kernel.org/cgit/linux/kernel/git/horms/
renesas-backport.git/
gen3 : https://git.kernel.org/cgit/linux/kernel/git/horms/
renesas-bsp.git/

53 / 53 Hisao Munakata Digitalization of Kernel Diversion from the Upstream

http://www.elinuxwiki.org/yaminabe2
https://github.com/trendmicro/tlsh
https://github.com/trendmicro/tlsh/blob/master/TLSH_Introduction.pdf
https://github.com/trendmicro/tlsh/blob/master/TLSH_Introduction.pdf
https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf
https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf
https://git.kernel.org/cgit/linux/kernel/git/horms/renesas-backport.git/
https://git.kernel.org/cgit/linux/kernel/git/horms/renesas-backport.git/
https://git.kernel.org/cgit/linux/kernel/git/horms/renesas-bsp.git/
https://git.kernel.org/cgit/linux/kernel/git/horms/renesas-bsp.git/

	Did you care for purity of your Linux BSP
	common embedded Linux issues caused by in-house kernel
	Sanity assessment for the vendor kernel

	Computer aided BSP kernel sanity check
	upstream code match detection
	TLSH based yaminabe2(=yb2) method
	It's time to play yaminabe2 on your machine

	Yaminabe2 execution and trial result
	Running yaminabe2 scan on Renesas R-Car BSP
	Some R-Car Linux BSP sanity analysis
	outcome and lesson learned

	conclusion

