
1

Introduction to
LTSI for the Industry

October 27, 2011
Embedded Linux Conference Europe 2011
@Prague Czech Republic

Tsugikazu Shibata, NEC
CE Workgroup, the Linux Foundation

(Long Term Support Initiative)

CONTENTS

• Who we are?
• CE/Embedded Industry Problem
• LTSI Project overview

– Long term @ kernel.org
– LTS Industry Tree
– Upstream support
– Pilot project Yami-nabe

• Conclusion

2

Who we are?

• Member of Consumer Electronics Working
Group “CEWG” in the Linux Foundation
– HP, Hitachi, IBM, Intel. LG, NEC, Panasonic,

Renesas, Samsung, Sony, Toshiba
• We have discussed current Consumer

Electronics industry’s problem

• We hope to solve such problem working with
community

3

4

CE/Embedded
industry problem

Problem 1: Shorter product lifetime compared
with Enterprise product

• Lifetime of the Enterprise industry products are about
5 to 10 years
– Latest RHEL(Red Hat Enterprise Linux) is using 2.6.32.x

kernel which is maintained by the community as long term
version

– We expect that RHEL will use same kernel version in next 3-
4 years. So, next long term kernel needs to establish 3-4
years later

• Lifetime of the Consumer products are 1 to 3 years
– CE industry need to refresh kernel every year but there are

no community long-term infrastructure.

– 2.6.35 had been established as long term last year and are
using in lots of embedded products. But NO follow on long
term version was discussed 5

Enterprise Linux distributions and kernel versions

•RedHat and SUSE used different kernel version before

•2.6.16 and 2.6.27 was defined as long term version in
the community and SUSE was use it

•Since 2009, Both distribution used same kernel
version 2.6.32

2004 2005 2006 2007 2008 2009

2.6.9
Oct.

Fedora3
Dec.

RHEL4
Feb.

2.6.18
Sep.

Fedora6
Oct.

RHEL5
Mar.

2.6.16
Mar.

SUSELinux10.0
May.

SLES10
Jul.

2.6.27
Oct.

OpenSUSE11.1
Dec.

SLES11
Mar.

2010

2.6.32
Dec.

F12/F13
Nov. May

RHEL6
Nov.

2.6.32
Dec.

OpenSUSE11.2/3
Nov/Jul.

SLES11SP1
May

2011

6

Problem 2: No common ground for embedded kernel
• Android and MeeGo are releasing every 6 month with latest

kernel (to provide the innovative features)

– Semiconductor vendors are providing BSP with kernel every
time without support

– Every Manufacturers are using the BSP with the kernel
owning their kernel support

• Manufacturers and Semis need some time for system level
verification

• Industry wants to reuse same kernel for a few
product generation

• We need an industry managed kernel
– With some feature back ported from latest upstream kernel

– With include Semis supplied patch

– With common QA activity 7

Problem 3: Upstream patch submission from
embedded is still very inactive

• Engineers in Embedded production team pay huge attention
to Linux, especially device driver code quality

• And they likely modify device driver code to improve system
stability and/or performance

• Therefore, embedded industry engineers own some good and
important patches in house, however patch submission from
these engineers are very low

• As these codes are not mainlined, they need to apply same
enhancement when they adopt new kernel for their products

8

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

9

Upstream principals = divergence (generalize)

 Think sustainable evolution
 random technical improve
 no specific target products
 allow diversity

 Ever lasting development
 no specific due date
 Think for the better future
 incremental improve
 moving target depends on demand

 Fair governance
 Completely open
 purely technical (for best)
 volunteer contribution basis

memory
management File System

pow
er

m
anagem

ent
V4L2

Upstream guys work for unified better future for all

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

10

Production principals = convergence (specialize)

 Clear production goal
 strict release due date
 severe performance target
high cost pressure

 One shot development
 allow interim solution
 average skilled engineer
 relatively large team

 Quality requirement
product liability demand
 limited use case
 reset is not allowed

product

schedule
budget

Industry developer work for their current particular product

Project requirements

• We need Long-term community based
Linux kernel to cover embedded
industries’ life time

• We need Industry managed kernel tree as
a common ground for Embedded industry

• We need some mechanism to support the
upstream activities for Embedded
engineers

11

12

LTSI
Project Overview

LTSI project overview

Kernel.org
(Greg K-H)

Kernel
Mainline

CE WG

long-term
stable tree

Staging tree

Industry staging tree
LTS Industry tree

(Linux-Next)

LTSI Staging tree

Bug fixes

Feature back-porting

ProductsFeatures Features

Features

Bug Fixes Bug FixesIndustry

• Project consists of tree part

Upstream support

13

LTSI project Over view:
1. Long-term Stable tree @ kernel.org

Kernel.org
(Greg K-H)

Kernel
Mainline

CE WG

long-term
stable tree

Staging tree

Industry staging tree
LTS Industry tree

(Linux-Next)

LTSI Staging tree

Bug fixes

Feature back-porting

ProductsFeatures Features

Features

Bug Fixes Bug FixesIndustry

Upstream support

14

Long term Stable tree @ kernel.org
• Establish a version on a mostly yearly

basis
• Maintain two years long and at most 2

versions will be maintained
• Include only bug fixes and security fixes
• Starts regular operation from 3.0 kernel
• Maintained by Greg KH

15

2013 2014 201520122011

New community kernel longterm maintenance
scheme proposed by Greg Kroah-Hartman

16
http://lwn.net/Articles/454886/

How to decide the version of long-term
supported kernel ?
• There are no concrete process to decide

what version would be supported as long
term

• We would propose:
– Industry Advisory Board (IAB) will be the

place to discuss what version would be the
long term supported and suggest it

– Member of IAB should be key industry distros
and/or stake holders

17

LTSI project Over view:
2. LTS Industry tree

Kernel.org
(Greg K-H)

Kernel
Mainline

CE WG

long-term
stable tree

Staging tree

Industry staging tree
LTS Industry tree

(Linux-Next)

LTSI Staging tree

Bug fixes

Feature back-porting

ProductsFeatures Features

Features

Bug Fixes Bug FixesIndustry

Upstream support

18

LTS Industry tree
• This is the Industry’s managed tree (not for the

community)
• Maintained by CEWG who will publish it
• Based on the long-term stable kernel tree

– Refresh its version every year and maintain at most 2 versions in
2 years

• Include back port features from upstream
• Include Semiconductor vendors patches
• Include important features for industry
• Include mainlining services for industry engineers

19

2013 2014 201520122011

Maintain LTS Industry tree

20

Chief Maintainer Back Port team

Semiconductor Vendors

Contributors

Maintainer
maintains the tree
and its contents
with Quality

Back port team will
back port features from
upstream

Semiconductor vendors
contribute their code.

Industry engineers can
contribute their code.QA team

LTSI Staging team
(Feature Integrator)

LTSI
Tree

LTSI
Staging

Tree

Feature Integrator maintain
staging tree.

Community
Long-term

kernel
Tree

latest
upstream

Kernel

21

Feature back port candidates to LTSI
• New device drivers (in latest upstream) *1

– Common device drivers for embedded (mainlined
in the latest version)

• Part of common kernel functions*2

– Memory / power management
– Real-time enhancement
– Boot related (boot method, boot time .,etc)
– Size related (Linux-tiny etc)
– Performance improvements

• Platform support features in latest
upstream*3

2: Not all fundamental change can be back ported due to its complexity.
Framework change might not be applicable as it require huge code change

1: Target driver list will be maintained by the project

3: Latest SoC/BSP supported features may be back ported

How to add new drivers/features to LTSI

1) Submit the code to current upstream
2) Get community review and feedback
3) Adjust code based on 2) to fit upstream
4) Code queued (or merged)

5) Then back port that code to LTS Industry tree.
We expect test code will come with code

Or

6) Queue to the LTSI staging tree directly in special
case

7) After reviewed in LTSI staging tree then merge into
LTS Industry tree

22

• To secure back port code quality, we want to conduct
system test in LTSI

• We want to discuss with other parties to share test
processes and results

• Activity of QA team in LTSI :
– Define QA process, design and develop test system
– Design and develop test scenario with other parties
– Report the test result
– Project participants can share this test framework

• Testing device drivers are always problem
– LTSI QA team would like to;
– Work with new driver author to create test scenario
– Help device driver developer to cover full function could be

implemented and tested for industry usage
23

LTSI comes with test

LTSI project over view:
3. Upstream support

Kernel.org
(Greg K-H)

Kernel
Mainline

CE WG

long-term
stable tree

Staging tree

Industry staging tree
LTS Industry tree

(Linux-Next)

LTSI Staging tree

Bug fixes

Feature back-porting

ProductsFeatures Features

Features

Bug Fixes Bug FixesIndustry

Upstream support

24

Upstream support in LTSI

Key activities are:
• Industry staging tree
• Accept Patches for LTSI version and port

it (to latest version)
• Consultation and support for industry

engineers (using LTSI staging tree)

25

Upstream support in LTSI:
LTSI staging tree
• Industry tree to support upstream activity

for industry engineers
• Be a place to collect patches (from

industry engineers)
• Maintained by LTSI staging team to merge

the patch into upstream
• Review and evaluate the patches and give

feed back to industry engineers

26

Upstream

Semiconductor
BSP Tree

Contributors

LTS
Community Tree

Product Trees

Bug Fixes
New Features

CEWG
LTSI Staging

Tree

1.

2.

7.

7.
4. 5.

6. 7. 8. 9.

10.

11.

12. 13.
3.

Industry
Staging Tree

LTS
Industry Tree

Upstream support in LTSI:
Accept Patches for LTSI version and port it

27

Upstream

Semiconductor
BSP Tree

Contributors

LTS
Community Tree

Product Trees

Bug Fixes
New Features

CEWG
LTSI Staging

Tree

1.

2.

7.

7.
4. 5.

6. 7. 8. 9.

10.

11.

12. 13.
3.

Industry
Staging Tree

LTS
Industry Tree

Upstream support in LTSI:
Accept Patches for LTSI version and port it

28

Upstream support in LTSI:
Consultation and support for upstream

• LTSI project creates better connection with
industry engineers
– Each company identifies an industry contact

to LTSI
– Each of LTSI team member will communicate

with industry contact to help their upstream
work

29

• Industry Staging Tree Maintainer
• Integration Consultant

LTSI
Project Office

LTSI
Team

LTSI
BP Team

LTSI
QA Team

• LTSI Chief Maintainer

• Project Manager
• System Administrator

Upstreaming
Team

• BP Engineer •Test Designer
•Test Engineer

Industry
Contact

Industry
Engineers

LTSI
Supervisor

Contributors

Semi
BSP Team

Semi
Contact

Industry
Contact

Industry
Engineers

LTSI
Staging Team

•Feature Integrator
•Upstreaming Engineer
•SME (Contractor)

Semi
BSP Team

Semi
Contact

(From Upstream)
(From Industry)

(From Industry)

Industry
Advisory Board

30

Question : Do we really need to provide
upstream support?

• We expect there are many of non-
upstream code in each industry products.
however, is that true?

• For what part of kernel, how many lines of
codes and why?

• If we do not know anything, we are not be
able to support them

• So, We need some investigation..

31

32

Pilot Project - “Yami-nabe”

• What is “Yami-nabe” ?
• Japanese old time’s fan party to enjoy thrill

and happenings.
• The party will be held in the dark room.

• “Yami” = Dark room, “nabe” = Cauldron
• Participants bring some foods without

disclosing anything and put them in the
cauldron. No one knows what foods are in
the cauldron because of the dark room and
then boil it.

• Participants pick a food from the cauldron
by using chop sticks.. He or she should eat
it whatever he/she doesn’t like it …

3333

Pilot Project - “Yami-nabe”

• Why “Yami-nabe” pilot project ?
• Manufacturers do not want to provide their

kernel code to avoid unnecessary
comparisons with competitors

• We created “Yami-nabe” environment that
was put kernel code without company’s
name.

• We have cooked/analyzed them and found
out common changes which are not part of
the Upstream.

Yami-nabe : project outcome (summary)

• We have investigated 15 products those adopt the
same kernel code base, and we confirmed duplicated
effort mostly in driver and arch code as we assumed.

• Majority of these fragment seems come from SoC
vendor code, however each code are adjusted to
{fix, improve, coordinate} by manufacturers as well.

• We tried to read their intention for such modification
from USB, MMC and Touch driver code, but it is not
straightforward to know the real reason for each
change from just code.

34

Yami-nabe : outline (per product diffs)

35

product kernel version total file unique file uniqueness

1 2.6.35.10 28,012 719 2.6%

2 2.6.35.13 28,179 903 3.2%

3 2.6.35.10 27,814 541 1.9%

4 2.6.35.13 28,201 940 3.3%

5 2.6.35.10 27,848 572 2.1%

6 2.6.35.10 27,872 579 2.1%

7 2.6.35.9 28,005 669 2.4%

8 2.6.35.10 28,144 754 2.7%

9 2.6.35.10 28,241 1,135 4.0%

10 2.6.35.10 27,947 576 2.1%

11 2.6.35.10 27,872 579 2.1%

12 2.6.35.10 28,108 713 2.5%

13 2.6.35.7 29,303 1,890 6.4%

14 2.6.35.7 28,413 1,882 6.6%

15 2.6.35.7 28,318 1,264 4.5%

Yami-nabe : Top 10 different versions files

36

frequency path

1 13/15 drivers/usb/gadget/android.c

2 12/15 drivers/usb/gadget/composite.c

3 12/15 drivers/mmc/core/core.c

4 9/15 drivers/video/msm/msm fb.c

5 9/15 drivers/video/msm/mdp.c

6 9/15 drivers/usb/gadget/f mass storage.c

7 9/15 drivers/mmc/core/sdio.c

8 9/15 drivers/mmc/core/mmc.c

9 9/15 drivers/mmc/card/block.c

10 9/15 drivers/cpufreq/cpufreq ondemand.c

Almost every device has a slightly different version for the
USB gadget driver, the MMC driver and a video driver.

Yami-nabe : [usb]

37

frequency path

1 13/15 drivers/usb/gadget/android.c

2 12/15 drivers/usb/gadget/composite.c

3 9/15 drivers/usb/gadget/f mass storage.c

4 8/15 drivers/usb/gadget/msm72k udc.c
5 5/15 drivers/usb/gadget/u serial.c
6 5/15 drivers/usb/gadget/f rndis.c
7 4/15 include/linux/usb/gadget.h
8 4/15 drivers/usb/gadget/u serial.h
9 4/15 drivers/usb/gadget/u ether.c

10 4/15 drivers/usb/gadget/storage common.c
11 4/15 drivers/usb/gadget/gadget chips.h
12 4/15 drivers/usb/gadget/f serial.c
13 4/15 drivers/usb/gadget/f diag.c
14 4/15 drivers/usb/gadget/f adb.c

Yami-nabe : [mmc]

38

frequency path

1 12/15 drivers/mmc/core/core.c
2 9/15 drivers/mmc/core/sdio.c
3 9/15 drivers/mmc/core/mmc.c
4 9/15 drivers/mmc/card/block.c
5 8/15 drivers/mmc/host/msm sdcc.c
6 6/15 drivers/mmc/host/msm sdcc.h
7 6/15 drivers/mmc/core/sd.c
8 5/15 drivers/mmc/card/queue.c
9 3/15 drivers/mmc/core/host.c

10 3/15 drivers/mmc/core/sdio cis.c
11 3/15 drivers/mmc/core/mmc ops.c
12 3/15 drivers/mmc/core/core.h
13 3/15 drivers/mmc/core/bus.c
14 2/15 drivers/mmc/host/omap hsmmc.c

Yami-nabe : [touch panel]

39

frequency path

1 6/15 drivers/input/misc/gpio input.c
2 4/15 drivers/input/misc/gpio switch.c
3 4/15 drivers/input/misc/cm3602 lightsensor microp.c
4 4/15 drivers/input/input.c
5 3/15 drivers/input/misc/gpio matrix.c
6 3/15 drivers/input/keyreset.c
7 3/15 drivers/input/evdev.c

frequency path

1 7 /15 drivers/input/touchscreen/atmel.c
2 4 /15 drivers/input/touchscreen/cy8c tma ts.c
3 2 /15 drivers/input/touchscreen/himax8250.c
4 2 /15 drivers/input/touchscreen/atmel 224e.c

[input (exclude touch panel)]All 15 products modified
their touch driver

Yami-nabe : [core kernel]

40

frequency path

1 6/15 kernel/timer.c
2 6/15 kernel/sched.c
3 6/15 kernel/power/wakelock.c
4 6/15 kernel/power/earlysuspend.c
5 5/15 kernel/sys.c
6 5/15 kernel/printk.c
7 5/15 kernel/power/suspend.c
8 4/15 kernel/power/power.h
9 4/15 kernel/power/main.c

10 4/15 kernel/panic.c
11 4/15 kernel/irq/pm.c
12 3/15 kernel/softirq.c
13 3/15 kernel/sched fair.c
14 3/15 kernel/pm qos params.c

Yami-nabe : [core kernel 2]

41

frequency path

15 3/15 kernel/kthread.c
16 3/15 kernel/irq/handle.c
17 3/15 kernel/exit.c
18 2/15 kernel/workqueue.c
19 2/15 kernel/time/timekeeping.c
20 2/15 kernel/time/tick-sched.c
21 2/15 kernel/stop machine.c
22 2/15 kernel/semaphore.c
23 2/15 kernel/resource.c
24 2/15 kernel/power/process.c
25 2/15 kernel/pid.c
26 2/15 kernel/irq/chip.c
27 2/15 kernel/fork.c
28 2/15 kernel/cpuset.c

Yami-nabe : observations

42

even in same vendor, there are
some fragment (duplication) found

Master
code

Product
vendor A

Product
vendor B

handset
1

handset
2

handset
3

some fragment
(duplication) found

SoC vendor tree

Outstanding SoC vendor code can
be seen in various product kernel

Yami-nabe : lessons learned
• If we can provide LTSI kernel that includes latest

driver fix, that would reduce driver code fragment.
(LTSI backport team may help)

• If LTSI can help upstream SoC vendor tree code and
if they can be a part of LTSI kernel, that would be
beneficial to both SoC and handset.
(LTSI staging and upstream support may help)

• Ideally each handset (or other) product producer will
write a patch to share their issue and fix, that could
eliminate existing driver code fragment.
(LTSI upstream support , consulting may help)

43

LTSI could be a solution to eliminate kernel code
fragmentation seen in consumer embedded world.

Future work

• We will start the actual work of LTSI
project by the end of the year and release
kernel tree in 1H of next year
– 1st LTS Industry kernel version will be 3.0

• We will continue to provide the status of
the project. Stay tuned.

44

Conclusion
• LTSI will provide a better foundation for

embedded industry to reduce the
fragmentations

• We wanted to reduce the fragmentation
and do not want to blame the current
situation

• We hope every related parties would join
our group and discuss how to solve such
problem

• Please plan to use this for your products to
reduce your fragmentation 45

THANK YOU

46

Reference:
http://www.linuxfoundation.org/collaborate/
workgroups/celf

Supplements:
Yami-nabe details

47

Yami-nabe : Motivation
• To observe kernel code fragmentation against

upstream code in each product from published
GPL kernel code. (statistical study)

• Investigate why and how these codes are
modified to consider how LTSI can help
eliminate unnecessary change or duplication.
(diff-code reading study)

• As we do NOT intend to criticize any party,
product and chipset vendor names are in
chambers (that is the meaning of Yami-nabe)

48

Yami-nabe : investigation target is DP

• There can be various cause of diffs like

DK = kernel version diffs
DA = Vanilla and Android diffs
DP = each product specific diffs

• To highlight change made by each product
design team (= DP), we intentionally set
one particular target environment to
“Android 2.3 Ginger Bread “ (kernel 2.6.35)

49

Yami-nabe : do check-sum comparison
• To find uniqueness of each product (DP) we made

“touchstone code” from kernel.org (all releases from
2.6.20 and upward until and including 3.0.4) as well
as upstream kernel from the Android project. We
adopted check_sum match to file compare.

• To eliminate noise we ignored following files
– an empty file
– a header file in include/config
– present in the upstream kernel
– present in upstream Android 50

AOSP Android

Vanilla kernel
2.6.20 – 3.0.4

+
AOSP Android

product code
file by file

upstreamS
check-sum
compare

Yami-nabe : uniqueness filtering

• Based on 15 devices comparison, we tried
to highlight common duplicated work using
following filter to drop inappropriate diffs

– One of the upstream kernels in the touchstone.
(backported code filtering)

– Code that can only be found in only one device
(production specific code filtering)

– There is just one version, even if it is present in
multiple devices. This indicates that the file is
already present in some upstream version, like a
vendor specific SDK that we have not included in
our database. (vendor SDK filtering)

51

Yami-nabe : outline (per product diffs)

52

product kernel version total file unique file uniqueness

1 2.6.35.10 28,012 719 2.6%

2 2.6.35.13 28,179 903 3.2%

3 2.6.35.10 27,814 541 1.9%

4 2.6.35.13 28,201 940 3.3%

5 2.6.35.10 27,848 572 2.1%

6 2.6.35.10 27,872 579 2.1%

7 2.6.35.9 28,005 669 2.4%

8 2.6.35.10 28,144 754 2.7%

9 2.6.35.10 28,241 1,135 4.0%

10 2.6.35.10 27,947 576 2.1%

11 2.6.35.10 27,872 579 2.1%

12 2.6.35.10 28,108 713 2.5%

13 2.6.35.7 29,303 1,890 6.4%

14 2.6.35.7 28,413 1,882 6.6%

15 2.6.35.7 28,318 1,264 4.5%

Yami-nabe : diff categorization

53

Product
specific

off-
upstream

code
[filtered]

Common upstream code
[filtered]

Same issue fix, but use different code

SoC vendor tree code
[filtered]

Deleted from common code

upstream

Product A

Product B

Product C

Yami-nabe : filtering result

54

In total 818 files are dropped with these filter. This
is significantly lower than the amount of unique files
in for example #13 or #15. This is because in these
devices there are quite a few files that are specific
for that particular device. #15 for example has its
own video driver. #13 has several drivers (gpu,
wireless network) that are just for that device.

Most of the duplicated effort was found in the drivers/ directory
(323 files) and the arch/arm/mach-msm/ directory (283 files).

Yami-nabe : Top 10 different versions files

55

frequency path

1 13/15 drivers/usb/gadget/android.c

2 12/15 drivers/usb/gadget/composite.c

3 12/15 drivers/mmc/core/core.c

4 9/15 drivers/video/msm/msm fb.c

5 9/15 drivers/video/msm/mdp.c

6 9/15 drivers/usb/gadget/f mass storage.c

7 9/15 drivers/mmc/core/sdio.c

8 9/15 drivers/mmc/core/mmc.c

9 9/15 drivers/mmc/card/block.c

10 9/15 drivers/cpufreq/cpufreq ondemand.c

Almost every device has a slightly different version for the
USB gadget driver, the MMC driver and a video driver.

Yami-nabe : [usb]

56

frequency path

1 13/15 drivers/usb/gadget/android.c

2 12/15 drivers/usb/gadget/composite.c

3 9/15 drivers/usb/gadget/f mass storage.c

4 8/15 drivers/usb/gadget/msm72k udc.c
5 5/15 drivers/usb/gadget/u serial.c
6 5/15 drivers/usb/gadget/f rndis.c
7 4/15 include/linux/usb/gadget.h
8 4/15 drivers/usb/gadget/u serial.h
9 4/15 drivers/usb/gadget/u ether.c

10 4/15 drivers/usb/gadget/storage common.c
11 4/15 drivers/usb/gadget/gadget chips.h
12 4/15 drivers/usb/gadget/f serial.c
13 4/15 drivers/usb/gadget/f diag.c
14 4/15 drivers/usb/gadget/f adb.c

Yami-nabe : [mmc]

57

frequency path

1 12/15 drivers/mmc/core/core.c
2 9/15 drivers/mmc/core/sdio.c
3 9/15 drivers/mmc/core/mmc.c
4 9/15 drivers/mmc/card/block.c
5 8/15 drivers/mmc/host/msm sdcc.c
6 6/15 drivers/mmc/host/msm sdcc.h
7 6/15 drivers/mmc/core/sd.c
8 5/15 drivers/mmc/card/queue.c
9 3/15 drivers/mmc/core/host.c

10 3/15 drivers/mmc/core/sdio cis.c
11 3/15 drivers/mmc/core/mmc ops.c
12 3/15 drivers/mmc/core/core.h
13 3/15 drivers/mmc/core/bus.c
14 2/15 drivers/mmc/host/omap hsmmc.c

Yami-nabe : [touch panel]

58

frequency path

1 6/15 drivers/input/misc/gpio input.c
2 4/15 drivers/input/misc/gpio switch.c
3 4/15 drivers/input/misc/cm3602 lightsensor microp.c
4 4/15 drivers/input/input.c
5 3/15 drivers/input/misc/gpio matrix.c
6 3/15 drivers/input/keyreset.c
7 3/15 drivers/input/evdev.c

frequency path

1 7 /15 drivers/input/touchscreen/atmel.c
2 4 /15 drivers/input/touchscreen/cy8c tma ts.c
3 2 /15 drivers/input/touchscreen/himax8250.c
4 2 /15 drivers/input/touchscreen/atmel 224e.c

[input (exclude touch panel)]All 15 products modified
their touch driver

Yami-nabe : [core kernel]

59

frequency path

1 6/15 kernel/timer.c
2 6/15 kernel/sched.c
3 6/15 kernel/power/wakelock.c
4 6/15 kernel/power/earlysuspend.c
5 5/15 kernel/sys.c
6 5/15 kernel/printk.c
7 5/15 kernel/power/suspend.c
8 4/15 kernel/power/power.h
9 4/15 kernel/power/main.c

10 4/15 kernel/panic.c
11 4/15 kernel/irq/pm.c
12 3/15 kernel/softirq.c
13 3/15 kernel/sched fair.c
14 3/15 kernel/pm qos params.c

Yami-nabe : [core kernel 2]

60

frequency path

15 3/15 kernel/kthread.c
16 3/15 kernel/irq/handle.c
17 3/15 kernel/exit.c
18 2/15 kernel/workqueue.c
19 2/15 kernel/time/timekeeping.c
20 2/15 kernel/time/tick-sched.c
21 2/15 kernel/stop machine.c
22 2/15 kernel/semaphore.c
23 2/15 kernel/resource.c
24 2/15 kernel/power/process.c
25 2/15 kernel/pid.c
26 2/15 kernel/irq/chip.c
27 2/15 kernel/fork.c
28 2/15 kernel/cpuset.c

Yami-nabe : observations

61

even in same vendor, there are
some fragment (duplication) found

Master
code

Product
vendor A

Product
vendor B

handset
1

handset
2

handset
3

some fragment
(duplication) found

SoC vendor tree

Outstanding SoC vendor code can
be seen in various product kernel

Yami-nabe : project outcome (summary)

• We have investigated 15 products those adopt the
same code base, and we confirmed duplicated effort
mostly in driver and arch code as we assumed.

• The majority of these fragments seems to come from
SoC vendor code, however each code are adjusted
to {fix, improve, coordinate} by set vendors as well.

• We tried to read their intention for such modification
from USB, MMC and Touch driver code, but it is not
straightforward to know the real reason for each
change from just code without git log information.

62

Yami-nabe : lessons learned
• If we can provide LTSI kernel that includes latest

driver fix, that would reduce driver code fragment.
(LTSI backport team may help)

• If LTSI can help upstream SoC vendor tree code and
if they can be a part of LTSI kernel, that would be
beneficial to both SoC and handset.
(LTSI staging and upstream support may help)

• Ideally each handset (or other) product producer will
write a patch to share their issue and fix that could
eliminate existing driver code fragment.
(LTSI upstream support , consulting may help)

63

LTSI could be a solution to eliminate kernel code
fragmentation seen in consumer embedded world.

